PZG Fault passage indication

The PZG series distribution line fault locating system is composed of three acquisition and/or indicating units (one per phase), and a pole-mounted collection unit. The system gives a visible, flashing indication of the passage of fault current, whilst collecting statistical locate the fault and Comtrade waveforms for subsequent analysis. It will also monitor the switch position and provide measurements of current, voltage, and temperature. The data can then be used for automated fault supply restoration, or can be transmitted to a remote master station for appropriate action to be taken.

The equipment can be powered from a line-mounted VT or from a solar panel. These are backed-up with a super-capacitor and a lithium ion battery to ensure that the equipment continues to operate under all conditions.

PZK-560F Demarcation switch controller

The demarcation switch controller is used for the measurement and control of the connection between the power utility and the consumer on a medium voltage distribution line. It can detect and respond to faults on the user side. It can also be used for tees from overhead lines and cable ring circuits providing commands for the operation of the switch, together with its measurement and control. The equipment is available in panel-mounted or bell-type format, suitable for installation on overhead lines and cables.

Features:
- Protection, measurement, control, communication and other functions all in one
- Automatic identification of line transient and permanent faults.
- Identification of faults on the user side
- Low current earth fault detection and isolation, using zero-sequence current transient components

Kehui International Ltd.
Studio 206, Mill Studio Business Centre,
Cranes Mead, Wheathampstead,
SG12 8PY, United Kingdom
Tel: +44 (0) 1920 444050 | Email: info@kehui.com | www.kehui.com
Cable Fault Location

Cables are a key part of the electrical power system, delivering electricity efficiently, while improving the environment by displacing unhealthily overhead lines. However, invisibility comes at the cost of making it difficult to locate and repair the faults that they may incur. A failed cable brings the inconvenience of a loss of supply, but where the load is critical, the inconvenience becomes critical for more severe faults. Furthermore, the deregulated industry has led to the imposition of financial penalties on power companies and the need to provide a power fault. As a result, there is a need to locate the fault and Kehui addresses this need for swift fault location through its range of products.

Power Utility Products

The transmission line is a key element in the electrical power network, transporting vast amounts of energy across often considerable distances. The condition of these lines needs to be continuously monitored to ensure their health and reliability so that any fault that does occur is located quickly and dealt with promptly. Discrete transient recorders remain a vital part of the electrical power system. Even though advancements in multiphase power electronics and smart grid technology have increased the use of intelligent electronic devices (IEDs), the stand-alone TFR-100 can provide a much more detailed picture without having to piece together the various data from other sources, which are often only recorded when the IED records an actual fault condition. With its variety of triggers, the TFR-100 can identify problems on the system before a fault occurs. When a fault does occur, it can be difficult to locate, particularly on long remote lines. Conventional fault locators work on the principle of measuring the loop through which the fault current flows. In most cases, the location of the fault is determined through the use of the Multiple Impulse Method (MIM) to locate the fault and Kehui addresses this need for swift fault location through its range of products.

Distribution Automation

Electrical distribution systems are becoming increasingly complex due to developments such as the increased use of embedded generation. Additionally, regulators put great pressure on the providers to arrange a more efficient supply. The solution to this need is automation to improve manual control of the system. In the era of big data, the network must quickly be reconfigured to reduce the amount of energy wasted due to the fact that the network takes the necessary action without any human intervention. They can interact peer-to-peer to automate a local network, or as remote terminal units (RTUs) for a wider SCADA system.

FTR-100 Fault Transient Recording System

The TFR-100 power system fault transient recorder is applicable to conventional and digital substations. In a conventional substation, the recorder performs transient, steady state and continuous recording of the AC system analogue and quantity data from the primary equipment. The unit will store 2 days of data under normal conditions, but if a wide range of triggering conditions are recorded it will store up to 52 days of data before other data is overwritten.

The unit also supports the IEC 61850 standard, both on the process bus and station bus level. In such digital substations, the unit monitors waveforms and moves at a time the digital substations. The XC-2100E consists of the travelling wave data acquisition unit XC-100E installed at the substation and the master station which analyses the data using software XCF-2100E. For accurate timing of the devices involved, the XC-2100E uses an internal GPS time synchronisation module to provide an accurate time reference.

XC-2100E Travelling Wave Fault Location System

The system provides for accurate fault location for all transmission and distribution power lines, with each unit measuring power flows, including real-time and recorded data, and further features such as GPS time synchronisation and remote control functionality.

1-065 High Voltage Surge Generator

The primary objective of any cable fault location system is to provide quick, effective, accurate and fast fault location, thereby reducing system outages and “customer minutes lost”. The XC-2100E is designed to meet these criteria. A portable testing system, consisting of a surge generator with arrestor and coupler to facilitate cable fault location using the Single Impulses, Multiple impulses or Impulse Current Method (SIM or ECM or EICM).

FTR-100 Fault Transient Recording System

The TFR-100 power system fault transient recorder is applicable to conventional and digital substations. In a conventional substation, the recorder performs transient, steady state and continuous recording of the AC system analogue and quantity data from the primary equipment. The unit will store 2 days of data under normal conditions, but a wide range of triggering conditions will allow it to store up to 52 days of data before other data is overwritten.

XC-2100E Travelling Wave Fault Location System

The system provides for accurate fault location for all transmission and distribution power lines, with each unit measuring power flows, including real-time and recorded data, and further features such as GPS time synchronisation and remote control functionality.

XC-2100E Travelling Wave Fault Location System

The system provides for accurate fault location for all transmission and distribution power lines, with each unit measuring power flows, including real-time and recorded data, and further features such as GPS time synchronisation and remote control functionality.

XC-2100E Travelling Wave Fault Location System

The system provides for accurate fault location for all transmission and distribution power lines, with each unit measuring power flows, including real-time and recorded data, and further features such as GPS time synchronisation and remote control functionality.